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We discuss the problem of ultrametricity in mean field spin glasses by means of
a hierarchical clustering algorithm. We complement the clustering approach
with quantitative testing: we discuss both in some detail. We show that the eli-
mination of the (in this context accidental) spin flip symmetry plays a crucial
role in the analysis, since the symmetry hides the real nature of the data. We are
able to use in the analysis disorder averaged quantities. We are able to exhibit a
number of features of the low T phase of the mean field theory, and to claim
that the full hierarchical structure can be observed without ambiguities only on
very large lattice volumes, not currently accessible by numerical simulations.
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HAPPY BIRTHDAY

This paper is to honor Giovanni Jona-Lasinio in occasion of his birthday.
We are grateful to him since he has taught us and so many other people in
Rome and in other places, a lot of physics and much about the way to love
good physics. Thanks, and Happy Birthday!

1. INTRODUCTION

The use of clustering methods to qualify the low temperature phase of
spin glass systems has been recently advocated in a group of very interest-
ing papers. (1) It is indeed well known that the broken phase of mean field



spin glasses (2) is very complex; this translates statically in the Parisi spon-
taneous Replica Symmetry Breaking (RSB) and dynamically in a series of
dramatic phenomena that go from a severe critical slowing down -T < Tc
to memory effects, aging phenomena and violations of the fluctuation-
dissipation theorem. (3)

RSB in mean field provides a description full of novel features, that go
from the presence of a transition in field to the existence of a non-trivial
distribution of overlaps to many other very atypical phenomena. (3)

Ultrametricity of states (4) is one of the key features of the mean field
Parisi picture: states of the system turn out to be endowed by an ultrame-
tric distance, and the phase space is organized hierarchically. Do finite
dimensional spin glass systems share this property, and can we find a way
to check that? This is an important issue of the persistent debate (5) about
the physics of the low temperature phase of finite dimensional spin glasses.
Also ultrametricity is one of the most distinctive features of the very special
organization of states found in the Parisi picture, and understanding it
better is a crucial goal.
Detecting ultrametricity on finite volume systems turns out to be very

difficult: (6, 7) the introduction of constrained Monte Carlo methods (6) and
the analysis of the dynamical behavior of the system (7) help only margi-
nally. Finite size effects are very strong, and make the asymptotic potential
emergence of a hierarchical structure difficult to observe.
Here we introduce some new analysis techniques and we study the

Sherrington–Kirkpatrick (SK) mean field model, where we know that for
low T a non-trivial ultrametric structure emerges in the infinite volume
limit. We will find out that this is a difficult task, sharing all the problems
one observes in finite dimensional systems. (1, 6) Our main points can be
summarized in four basic issues:

1. We find that to be of better use the approach based on hierarchi-
cal clustering has to be complemented by the use of testing techniques that
have been developed in the field of numerical taxonomy. (8) We discuss
some of these techniques and we show how they can be applied to our
problem.
2. We discuss the role of the Z2 symmetry of the phase space. We

find that removing this symmetry (that in this context is accidental) is
crucial to get sensible results from quantitative tests. We introduce and
discuss the way to remove the symmetry from equilibrium configurations
obtained in zero magnetic field.
3. Thanks to these techniques we are able to clarify how a finite

volume SK system behaves as far as ultrametricity is concerned, by
working out strengths and limitations of the method. We find that on the
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(medium-large) lattice sizes that we are able to analyze one can establish
that a structure is emerging, but that one cannot get a compulsory evidence
about this structure being ultrametric. This is exactly the same kind of
phenomenon one observes when studying finite dimensional systems. (1)

4. We analyze systematically finite size effects (by studying systems
on different lattice sizes) and the dependence of our results on T. Thanks to
the quantitative analysis techniques that we introduce we are able to use
hierarchical clustering techniques to discuss also quantities that are
averaged over the disorder, opening in this way a large information window.

The low temperature mean field behavior of spin glass systems is
understood in the framework of the Parisi RSB scheme. (3) The prototype of
mean field spin glass models is the SK fully connected Ising model where
the coupling constants are quenched random variables:

HJ[s]=− C
N

i, k=1
siJi, ksk, (1)

where si=±1 are spin variables and the Ji, k are distributed according to
an even distribution function. For example we can use a Gaussian distri-
bution with Jik=0 (since we want to avoid ferromagnetic effects) and
J2ik=

1
N (to ensure that the energy is extensive). As we have already men-

tioned, the Parisi RSB solution of the SK model, which is believed to be
the correct solution of mean field theory at low T, exhibits an ultrametric
organization of the states. (4) This means that in the infinite volume limit for
any triple of equilibrium spin configurations a, b, c we have that:

qab \min{qac, qbc},

where qab is the overlap among configurations a and b, defined as

qab —
1
N

C
N

i=1
sai s

b
i (2)

(here configurations a and b are independent configurations at equilibrium
under the same Hamiltonian, sharing the same quenched realization of the
random couplings: they are only coupled by the fact of sharing the same
realization of the random Hamiltonian. We also assume that the Z2 sym-
metry is broken by an infinitesimal field or by some other means, see later
for the details of what is really done). The overlap qab is a similarity index,
and the distance is connected to one minus the overlap.
We will analyze in detail the fact that revealing numerically an ultra-

metric emerging structure in finite systems is difficult. The question is even
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more relevant since detecting reliable signs of an ultrametric structure
could be crucial in finite dimensional systems, where the behavior of the
system in the low T phase is not yet understood. (5)

Clustering (8) is a powerful technique for analyzing data (for interesting
applications of statistical mechanical ideas to clustering see refs. 9–11).
Since producing a valid hierarchical clustering is equivalent to showing the
existence of a true ultrametric structure of the data, this kind of approach
can give crucial evidences. We will discuss here what happens in the infinite
range mean field SK model, where we know that eventually, in the infinite
volume limit, ultrametricity of states emerges. We believe this is needed to
help in interpreting the results obtained in the analysis of finite dimensional
models. (1)We will see that some important hints do indeed emerge.
In this note we introduce some new ideas relevant for hierarchical

clustering as applied to the analysis of disordered and complex systems,
and we discuss numerical results obtained from a clustering analysis of
equilibrium spin glass configurations, with a particular emphasis on the
study of the ultrametric nature of these states. We explain why a detailed
analysis requires an appropriate elimination of the spin flip symmetry and
we investigate the dependence of our results on the number of degrees of
freedom of the system, showing that finite size effects are actually very
large.
The paper is organized as follows. In Section 2 we introduce the clus-

tering procedure and we explain the motivations for our choice of cluster-
ing algorithm. In Section 3 we apply this technique to the SK model; we
discuss our findings about ultrametricity, also by comparing them with
those that one obtains by using standard techniques. Here we will intro-
duce and use quantitative ways to state the significance of the results
obtained by clustering (mainly in Section 3.1). As we said before a more
detailed analysis requires a previous elimination of the Z2 symmetry, and
this is done in Section 3.2: in Section 3.3 we will also say a few words about
using different clustering schemes. Section 4 is dedicated to the clustering
of the spins. We report our conclusions in the last section.

2. THE CLUSTERING ALGORITHM

Clustering is a special kind of (potentially very powerful) classification
tool. We will give here only the basic informations we need for our analy-
sis, and we advise the reader to look at (8) for further details.
Let us consider a sample done of M data xm, where each data point

xm — {xm1 ,..., x
m
N} is a vector in a N-dimensional space. We want to study

the underlying organization of the data, i.e., we want to find out whether
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the data are organized according to some non-trivial structure. A problem
of this type is strictly related to pattern recognition analysis and to Bayes
decision theory: (12) it is of very general interest, since it emerges in many
relevant contexts.
The main ingredient for the analysis is the proximity matrix

dmn — d(xm, xn). d(xm, xn) is some measure of the dissimilarity of data m
and n. It is such that dmm=0 and dmn=dnm \ 0. d does not need to be a dis-
tance (for example the triangular inequality could not be satisfied) but
usually it is one.
By clustering we group the data in sets that can be related among them

in different ways. Here we will use the exclusive (each data belongs to
exactly one cluster), intrinsic (i.e., based only on the proximity matrix d)
classification known as hierarchical clustering. Hierarchical clustering is a
nested sequence of partitions obtained through a classification technique
based on one of many possible algorithms. The output of the algorithm can
be represented by a hierarchical tree (a so-called dendrogram).
A generic (even random) set of data can always be arranged to fit a

tree-like structure: this is indeed what clustering does. After doing such
(potentially arbitrary) clustering we are left with the relevant question of
deciding if the hierarchical structure that has been reconstructed was
somehow intrinsic to the data set: this requires an analysis a posteriori.
So, in hierarchical clustering we start from a set of data, we group

them by some algorithm (that we will specify in the following) building in
this way a hierarchical tree. Comparison of this tree and the original data
can lead to quantitative conclusions about the presence of a true hierarchi-
cal structure in the data.
In the course of a cluster analysis one usually faces two main

problems.

• The first important step is the definition of the dissimilarity index dmn
which is not always naturally induced from the context (data do not neces-
sarily belong to an Euclidean space).
In our case this is an easy problem. Starting from the usual notion of

overlap (2) the distance between two spin configurations can be for
example naturally and easily defined as

dmn —
1−qmn
2
.

• The second problem is how to update distances among elements.
When we fuse elements a and b in element c (so joining two smaller clusters
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in a larger one) we have to define all distances from the new cluster c to all
other clusters of the system g. This step is crucial since it can play a dra-
matic role in the structure of the iteration, even if in situation where hier-
archical clustering turns out to be natural, i.e., an intrinsic property of the
data set, results have to be independent from this issue (there exist alterna-
tive approaches which allows to avoid such an explicit choice by means of
a priori hypothesis (10, 13)).
The most part of our results has been obtained by the Ward method

(or minimum variance method). (8, 14) The method is based on minimizing the
square error, and is empirically known to outperform other hierarchical
clustering methods.
When we merge the two clusters that have the smallest distance we

define the new distance using the following rule: if r and s merge to
form rŒ, and na is the number of elements in the cluster a, then for any other
cluster y:

dyrŒ=
(ny+nr) dyr+(ny+ns) dys−(nr+ns) drs

ny+nr+ns
. (3)

Let Ca stand for one of the clusters of the system and consider the quantity

S=C
Ca

y(a),

where the sum is over all the clusters defined in the system and where

y(a)= C
m, n ¥ Ca

d2mn. (4)

The choice of the Ward algorithm ensures that when merging two clusters
to form a new one S increases of a minimal amount. In other terms this
definition of distance is the one induced from the maximum likelihood
principle.
Let us just summarize again what we do. We look at all distances

among all elements. We select the two elements that have the smallest dis-
tance and we fuse them to form a new element (cluster). Now we define a
distance among this new element and all the other ones and continue this
procedure till reduction to a single cluster.

This defines the clustering scheme that we will follow. We will discuss next
how these ideas can be applied to mean field spin glass models, and how
the result can be understood and quantified by testing the cluster validity.
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3. CLUSTER ANALYSIS OF THE SK MEAN FIELD SPIN GLASS

As we have said we have decided to analyze numerically the mean field
SK model. Since here the infinite volume scenario is under full control we
believe this is a crucial step in understanding what one can learn from
numerical simulations on finite lattices, and to control the consequences of
such results obtained on finite dimensional models (1) where, on the con-
trary, the theoretical scenario is far from clear.
We have started by generating by an optimized Monte Carlo method a

large number of uncorrelated spin configurations on lattices of different
sizes and for a number of different realizations of the quenched disorder
(on which we eventually average), under the Hamiltonian (1), with
quenched random couplings assigned under a Gaussian distribution. We
analyze systems with N, number of spins, equal to 128, 256, and 512
(N=512 is typical of a medium size numerical simulation, corresponding
for example to a linear size of 8 in three dimensions). We thermalize our
systems at a set of different values of the temperature typically going from
0.1Tc (a very low value, that we can reach only thanks the power of parallel
tempering (15, 16)), and in all cases we analyze 20 different realizations of the
quenched couplings. For all lattice sizes, relevant temperatures and dis-
order realizations we first thermalize the system. After doing that we record
one spin configuration after any new set of 1000 combined full Monte
Carlo sweeps and parallel tempering updates of the system. The large
‘‘computer time’’ separation among different configurations guarantees a
very high level of statistical independence. Residual possible (very small)
correlations would not spoil our analysis but would only make it a bit less
effective. We have recorded 1024 such independent spin configuration for
each value of the parameters: such configurations are the basic set of
objects that we have clustered.
Parallel tempering (15, 16) has been crucial in allowing to bring at thermal

equilibrium spin configurations at such low temperature values on accept-
able lattice volumes. The method is based on simulating in parallel copies
of the system at different temperature T values, allowing the different
copies to swap T among them (with a standard Metropolis weight). This
reduces the free energy barriers, always keeping the different copies at
Boltzmann equilibrium: tempering can be seen as an annealing where the
basic quantity is not energy but free energy.
We have used all standard criteria to check that, when using the

Parallel Tempering optimized Monte Carlo scheme, we have really reached
thermal equilibrium: (16) we have checked that our sample dependent
overlap probability distributions PJ(q) are indeed well symmetric under
q0 −q, we have checked that all copies of the system have visited
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Fig. 1. An example of the clustering procedure as applied to a very low temperature set of
configurations. In the left part of the figure we show a proximity matrix P built overM=512
configurations of N=512 spins at T=0.1Tc, ordered at random. Darker colors correspond to
smaller distances. On the right part of the figure we draw the dendrogram that results from
our clustering, and the resulting P. The distance on the dendrogram is proportional to y(a)
defined in Eq. (4). The method recovers very well the structure of two giant clusters related by
the Z2 symmetry.

a number of times all available temperature values, we have checked that
the acceptance factor of the temperature acceptance swap has been of order
0.5 (the method also converges, in principle, when using a ‘‘bad’’ choice of
the temperature set, that implies a ‘‘bad’’ acceptance factor, but in this case
the convergence can become dramatically slow).
In the rest of this note we will work on clustering these configurations

and on using quantitative testing to extract the implications of the hierar-
chical structure that we obtain.
We first introduce a standard graphical way to get a qualitative feeling

about the set of data. We consider the proximity matrix P, where we have
the set of data (in some order to be specified) on the x and on the y axis,
and where we plot with darker colors points with higher overlap: the
diagonal constitutes by definition the darkest set of the matrix. In Fig. 1 we
start by showing, on the left, the matrix P for a given disorder realization
at N=512 and T=0.1Tc (a very low value of T, the lowest we have
analyzed: here the system is basically in its ground state) where configura-
tions have been ordered at random. A clearly random pattern emerges
(note that this is not ‘‘white noise’’ since the triangle inequality implies
strong correlations: see ref. 6 for a detailed discussion of this issue).
We apply the Ward algorithm to these configurations in order to

obtain a hierarchical tree (as we have discussed before).2 The hierarchical

2 For clustering we have used the very flexible set of programs developed by P. Kleiweg,
available from http://odur.let.rug.nl/~kleiweg/clustering/clustering.html
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Fig. 2. The dendrogram and the related P matrix obtained from the clustering of M=256
configurations at three different temperature values. On the left T=0.3Tc (where T is very low
and no significant structure but the Z2 degeneracy can be observed), in the center T=0.5Tc
(that is the best T region for observing the non-trivial state structure), and on the right
T=2.0Tc, where there is no structure since we are deep in the high T phase.

tree that contains the information about the clustering, the so-called
dendrogram3 is shown in the upper part of the right side of Fig. 1 (the ver-

3 In a dendrogram longer lines are for farer clusters. In most of our drawings, when we are not
interested in analyzing this specific information, we use an appropriate power law deforma-
tion of the scale to make the graph more readable and telling.

tical line is for the distance on the dendrogram, proportional to y(a)
defined in Eq. (4)). In the lower part of the right hand side of Fig. 1 we
show the matrix obtained by ordering the configurations as from the
dendrogram on the x and on the y axis. Now the two reflected states appear
very clearly (at such a low T value there are basically two d functions at
values ±q̄, where q̄ is close to one). We cannot observe any further struc-
ture, since T is too low (the ideal temperature value for observing hints of
ultrametric effects will turn out to be, for our lattice sizes, of the order of
0.5Tc). As we increase the temperature we observe that well defined struc-
tures emerge (see Fig. 2, where we show results for a single sample, with
N=512, at T=0.3Tc, T=0.5Tc, and T=2.0Tc): when we reach the critical
temperature Tc and we go deeper in the warm phase we obtain a homoge-
neous matrix: here spins are equally likely to be up or down, and as a con-
sequence the overlap between two configurations is zero on average.
We stress that the information about the Z2 symmetry is a trivial, well

known one, that does not give us further insight: still, it is interesting that
the clustering algorithm is able to reconstruct it. We will discuss at length
the fact that, on the opposite side, the presence of the symmetry is deeply
annoying in that it makes more difficult to get quantitative information
about the structure in one of the two Z2 sectors, hiding many features of
the data, and making interesting predictions impossible.
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We also use Fig. 2 to make a further point. The dendrograms, that
make possible to visualize the hierarchical structure build from the cluster-
ing, do not give much unambiguous information about the underlying
structure. The picture from T=0.3Tc is not so different, but for some
power rescaling of the lengths, from the one at very high T (T=2.0Tc)
where we do not expect a non trivial ultrametricity to appear. Clusters at
high T are, indeed, more balanced, but one can only get some qualitative
feelings about it.
In the following we will work on trying to quantify the qualitative

statements about the possible presence of a (maybe hierarchical) definite
structure in the low T phase.

3.1. Quantitative Testing

Before discussing our approach toward a quantitative analysis based
on hierarchical clustering techniques and aimed to check whether the spin
configurations (our original data set) are really organized according to an
ultrametric structure, we analyze the system by applying a more standard
statistical mechanical approach. Following (1, 6) we analyze the probability
distribution of the variable

kmnr —
dmn−dmr
dnr

,

where we have ordered the three distances to satisfy the condition
C — {dmn \ dmr \ dnr}. This implies that kmnr ¥ [0, 1]. In an ultrametric
space we would get that P(kmnr=K |C)=d(K).
On our finite N lattices we assume the following dependence of P

over K:

P(kmnr=K |C) ’ exp 3 −
K2

2s2
4 h(K), (5)

where h( · ) is the step function. We analyze the behavior of the variance s2

with the size N. We show our results in Fig. 3. In the upper plot we select
T=0.5Tc and we plot s as a function of N. s decreases with N, but very
slowly (as we expected from the results of ref. 6, where even with a tuned
up Monte Carlo procedure one finds that similar analysis are very diffi-
cult): it is not even easy to get a reasonable fit to a zero limit of s (but the
very large statistical error allows for it). In the inset of the upper part of the
plot we show P(k=K | C) for one single sample. In the bottom plot we
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Fig. 3. In the upper part of the figure we plot variance of the distribution P(k=K | C)
versus the base two logarithm of the number of spins N at fixed temperature T=0.5Tc. In the
inset we plot P(k=K | C) as a function of K for a single sample of the quenched disorder. In
the lower part of the figure we plot s vs. TTc for N=512.

show how s depends on T on our largest lattice size, N=512. Nothing
dramatic happens when increasing T: again, only some qualitative low key
effect is taking place. We have also verified in a qualitative way that our
measured kmnr are indeed distributed according to (5).
Now we start with analysis of the results of our cluster reconstruction.

We have used our data (spin configurations for a given lattice size and
temperature, together with their mutual distances obtained from their
mutual overlap) to produce a hierarchical tree, and we want to test if this
tree is connected to intrinsic properties of our data (as we have already
clarified an ultrametric tree can always be superimposed even to random
data). We will adapt standard techniques (8) to judge about the validity of
the structure we have found and about the statement that data are
organized according to an ultrametric structure.
The general procedure testing has a simple structure: given a starting

proximity matrix P, we end our clustering procedure with a particular
ordering of elements of P, i.e., with a particular permutation of |P| data.
This is what our clustering scheme achieves (transforming the left part of
Fig. 1 in the right bottom matrix). Now we have the problem of deciding if
what we did was sensible: we can rephrase this question by saying that we
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have to choose between the randomness hypothesis (H0: all permutations of
labels of M are equally likely) and the alternative hypothesis (H1: the data
have some structure that has been at least partially reconstructed by the
clustering). In order to check that we:

1. define a variable T that we expect to be ‘‘small’’ under the null
hypothesis H0;

2. assign a confidence level a for H1 and define a threshold ta by
solving the equation

P(T \ ta | H0)=1−a;

3. measure from the data the value of T, that we call tg. If

(a) tg \ ta S reject H0 at level a;

(b) tg < ta S accept H0 at level a.

a is a confidence level, i.e., it is connected to the probability that by
accepting H1 as true we are not making a mistake.
The first tool that we introduce is based on Hubert’s C Statistics, (8, 17)

and it is useful to validate clustering. This is done by checking the correla-
tion of the data with a structure we define a priori.
We consider our measured distance matrix dmn, and we introduce the

matrix fmn by

fm, n=˛
0 if m, n ¥ same cluster

1 if not
(6)

We will study the correlations among dmn and fmn. Clearly we have also to
specify the definition of being in the same cluster. This introduces a param-
eter that allow to decide how deeply we want to test the clusterization fea-
tures of the data. We will introduce a threshold, that defines the refinement
level that we want to use to check our description.
We then have to define the a priori structure that we will compare to

the data. Let us call dmax the maximum distance (on the hierarchical tree)
among two configurations of our set: we say that two configurations belong
to the same cluster if their distance is smaller than a certain fraction of dmax,
say than dmax/z. We show in the right part of Fig. 4 how the number of
clusters Nc depends on z. At very low T we find a linear dependence of Nc
over z, while at values of the order of 12 Tc Nc grows faster than linearly.
In Fig. 4 we also show, for one sample of the quenched disorder, the true
distance matrix dm, n and four different matrices fm, n obtained with an
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Fig. 4. On the top left panel we plot the true distance matrix for a single disorder sample at
T=0.5Tc. The following four matrices fm, n are obtained for four different values of the
threshold as defined in Eq. (6). On the bottom right panel we plot the number of clusters Nc
versus z, i.e., how the the number of valleys depends upon the value of threshold we fix in
order to test the hypothesis. It turns out to be linear for small T/Tc, exponential if T N Tc/2.

increasing value of z (from the upper left corner going rightward and then
to the lower line and rightward again), z= 4, 8, 12, and 16. The difference
among the structures that we are testing in the different cases is obvious.
The careful reader will be able to recognize by eye that the three valley
structure implied by the threshold level z=4 can indeed be found in the
raw distance data of the leftmost matrix.
The main ingredient needed for analyzing the Hubert’s C statistics is

the correlation function

C=
1
M2 C

M

m=0
C
M

n=0

(dm, n−mD)(fm, n−mF)
sD sF

, (7)

where (for X=D, F, x=d, f)

mX —
1
M2 C

M

m=0
C
M

n=0
xm, n, s2X —

1
M2 C

M

m=0
C
M

n=0
x2m, n−m

2
X.
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Let us say that when looking at the output of the clustering we observe a
value of C equal to Cg. In order to estimate if this value hints for the hier-
archical structure being intrinsic to the data we have used a number of
tests. The first test amounts to little more than checking if our procedures
are correct: we take as H0 the randomness hypothesis, i.e., we compare our
ordered distance matrix to a matrix where the configurations are at
random. We would find that the configuration is not atypical only if our
programming was wrong. We compute an histogram P(C | H0), i.e., the
distribution of C under the null hypothesis of randomness, by evaluating

C(p)=
1
M2 C

M

m=0
C
M

n=0

(dm, n−mD)(fp(m), p(n)−mF)
sD sF

,

where the p are random permutations of the M configuration. A cluster is
not consistent with the hypothesis H0 (in this case the hypothesis that con-
figurations have not been ordered) if it is ‘‘unusual.’’ In order to quantify
this statement, we introduce an indicator D defined as

D —
Cg−SCT

`S(DC)2T

where the value of C that we have observed in our sample and where the
averages S ·T are taken with respect to the conditioned probability distri-
bution P(C | H0). As expected we always find a very high value of D for all
reasonable values of the threshold z (i.e., say, values of z that produce from
two to order hundred valleys): D is of order 102 and that it is only weakly
dependent on the temperature (even at T=. this test tells that, yes, we
had ordered the configurations, rejecting in this way H0 in a very clear cut
way, since we are dealing with a large matrix). As expected this procedure
gives positive results both on the original set of configurations and after
applying the reversing procedure described in Section 3.2.
The rest of the (more crucial) testing of the Hubert’s C statistics has

been done on the set of reversed configurations, where the Z2 symmetry
has been eliminated (see Section 3.2). We will discuss it later on, after
introducing same other important objects and methods.
The second tool we use to establish whether the particular hierarchical

structure we find is the correct one is based on the evaluation of the so
called cophenetic correlation coefficientK. It is defined as

K — Od ·dCP−OdPOdCP,

where the cophenetic distance dC(m, n) is measured on the dendrogram
(and because of that it is ultrametric by definition): this is the distance we
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have updated when building the hierarchy (see Section 2). For example, in
the case of Ward clustering, it is the quantity defined in (3). A high level of
correlation of true distance and cophenetic distance implies that the data
have an intrinsic ultrametric organization. On the contrary a low level of
correlation suggests that a true ultrametric structure cannot be detected.K
is a natural measure of the ultrametricity build in our data set.
If we try to analyze our original configuration set without removing

the Z2 symmetry (each configuration C has a corresponding configuration
−CŒ which appears with the same probability) we measure a high value
of K, always higher than 0.97. Interpreting this result as a confirm of the
detection of an ultrametric structure would be wrong: the Z2 implies a very
primitive form of hierarchical organization (states are grouped in two well
separated sectors of the phase space) and on finite, medium size volumes,
this is what we are measuring.
One way to clarify this issue is to look at Fig. 5, where we plot, for a

given sample of the quenched disorder, at N=512 and low temperature
T=0.3Tc, both the true distance d(i0, j) and the cophenetic distance
dC(i0, j) as a function of j for various values of i0. It is clear that the Z2

Fig. 5. Plot of the true distance d(i0, j) (solid lines with wiggles) and of the ultrametric
cophenetic distance dC(i0, j) (solid straight lines) versus j for different values of i0.
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symmetry makes the two distances similar in a trivial way, by designing the
same step: this is the reason that makes K M 1. The real physical differ-
ences are in the wavy behavior of the true distance: it is its difference from
the constant behavior of the cophenetic distance that has to be analyzed.
This is what we will do in the next section.
We will now apply a spin reversal procedure that allows us to obtain a

set of configurations that have, in the infinite volume limit, a positive defi-
nite mutual overlap. This is a very useful procedure (18) that makes our set
of configurations equivalent to a set of configurations obtained in an infi-
nitesimal magnetic field (without the drawback of having to keep under
control the smallness of the field). Only after doing that we will come back
to the evaluation of the cophenetic coefficientK.

3.2. The Reversing Procedure and Our Main Results

In the infinite volume limit the question of identifying in our set of
configurations two subsets, |+P and |−P is well posed. After doing that we
can flip all signs of the configurations in |−P, obtaining in this way a set of
configurations with a positive definite overlap.
We use here the approach introduced in ref. 18. We take one configu-

ration as starting point, S. We consider now a new configuration, and if
its overlap with S is negative we flip it. For a third configuration we con-
sider the average overlap with the first two, and we flip it if this is negative.
We do that for all configurations. This procedure works quite well, and it
can be improved in a number of ways (for example we can repeat it by
starting from the new set and considering a different reference configura-
tion and a different order).
In Fig. 6 we show the PJ(q) for several samples, before and after the

reversing procedure. It is clear that the procedure works quite well. The
main problems are for samples where different valleys are quite similar (we
are on finite lattices and there are intrinsic ambiguities that disappear in the
thermodynamic limit). A good example of a troublesome samples is the
second sample from the top on the right, where the reconstructed PJ(q)
has, even after our reversal procedure, a long tail at negative q values. We
have verified (see also ref. 18) that when increasing the volume size these
spurious effects become smaller.
We have also found that a second effective approach to the separation

of the phase space is based on using the same clusterization procedure we
will eventually use for analyzing the hierarchical structure. We first use
clusterization (based for example on the Ward algorithm) to identify the
two Z2 subsets. We then flip all spins of all configurations of one of the
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Fig. 6. The probability distribution PJ(q) for different realizations of the quenched disorder
(T=0.4), before (solid line) and after (dashed line) applying the reversing procedure. Here we
useM=512 configurations of a N=512 spin system.

two, and repeat the clusterization to find a new (hopefully faithful) hierar-
chical structure. This second approach gives results that are very similar to
the ones of the first approach (18) that we have discussed before: for example
the resulting PJ(q) are basically indistinguishable.
In the following we will use spin configurations ‘‘reversed’’ using this

technique.
In Fig. 7 we show the proximity matrix for two N=512 samples (at

T=0.2Tc and at T=0.6Tc) ordered according to the output of the cluster-
ing procedure (i.e., as from the dendrogram) and the corresponding
cophenetic matrix implied by the same dendrogram.
When the hierarchical, ultrametric structure is intrinsic to the data set

the matrices in the bottom line of Fig. 7 become equal to the ones in the
central line. Now that the accidental Z2 symmetry has been removed we are
able to look at the real, relevant physical effects. We have investigated the
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Fig. 7. Proximity matrix for two N=512 samples in the left and right parts of the plot (at
T=0.2Tc on the left for each of the two samples and at T=0.6Tc on the right for each of the
two samples) ordered according to the output of the clustering procedure (i.e., as from the
dendrogram, in the bottom) and the corresponding cophenetic matrix implied by the same
dendrogram (in the top).

issue in a systematic way. We average over 20 different quenched realiza-
tions of the disorder, and analyze the system for different lattice volumes as
a function of the temperature.
In Figs. 8a–c we plotK as a function of TTc for N=128, N=256, and

N=512. The upper sets of points with smaller errors are from the analysis
done before the spin reversal (Z), the lower sets of points with larger error
are from the analysis of the spin reversed configurations (R). We have
already discussed the fake detection of ultrametricity induced by the Z2
symmetry. We discuss now the data obtained after removing the symmetry.
In no cases a clear evidence for the existence of a true ultrametric structure
emerges.K is always small, and for T < Tc it does not even increase clearly
with N (finite size effects are very large and uncontrolled). It is interesting
that in the set of Z data the phase transition is detected quite clearly (but,
as we have explained, what we observed is no connected to a hierarchical
structure, but only to the usual breaking of the Z2 symmetry). At high T
values, for T > Tc the Z and the R sets of data coincide: here there is one
single state.
This analysis shows clearly that on medium size lattices it is impossible

to detect more than hints toward a hierarchical structure: in our mean field
model we know that ultrametricity will eventually emerge, but very large
lattices are needed for that.
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Fig. 8. In Figs. 8a–c we plot K as a function of TTc for N=128, N=256, and N=512. In
Fig. 8d we plot OCP versus the assumed density of valleys, i.e., the number of valleys divided
times the number of configurationsM: a large difference from the high T data implies a plau-
sible hypothesis. In Fig. 8e we compare single and complete link clustering: see the text for
further details.

In Fig. 8d we try a further test to improve the level of our quantitative
understanding. We could phrase our goal by saying that we are trying to
understand how many valleys we can be sure are present in the phase
space (we repeat that since we are studying the mean field Sherrington–
Kirkpatrick theory in the Parisi broken phase we know that asymptotically
an infinite number of such valleys will emerge). We go back to C defined in
Eq. (7). At different T values we change the threshold value z and monitor
the number of valleys we are building for a given z value (this depends on
T: we have discussed this procedure when commenting Fig. 4). We measure
C̄ and we plot it versus the average number of valleys per sample (all data
are for reversed configurations, except for one set of non-reversed data at
T=0.5Tc that we plot for sake of comparison). We use the high T
(T=1.9Tc) curve as a reference curve, and we consider it as the random-
ness threshold: if at a given temperature T the value of OCP is very differ-
ent than the high T value we consider that as evidence for existence of this
number of valleys.
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Using the high T limit as the reference line looks to us as a sensible
choice (we have already discussing that using unordered matrix lines is
basically just a check of the correctness of our procedure). If, for example,
we select a value of the x variable (number of clusters divided by M)
x=0.002, that in the case of N=512 assumes the presence of two valleys
(after removal of the Z2 symmetry) we see that at low T the data are quite
different from the high T ones, suggesting that we are probably already
detecting this (quite low) level of organization. When we try a threshold
implying a larger number of valleys (already for example for three of four
valleys on our larger lattice, N=512) the data are not far from the high T
ones, implying a failure in supporting the hypothesis.
We will discuss Fig. 8e in the next section.

3.3. Other Clustering Algorithms

As we have discussed in some detail in Section 2 the cluster recon-
struction algorithm is defined by selecting the rule used to join two ele-
ments at different levels of the partitioning, an to update the distance
matrix after each step of refining the partitioning level.
In our analysis we have used the Ward scheme (14) (that updates the

distances as in Eq. (3)): this is believed to be an optimal choice when there
is no information a priori on the data. (8)

Basic clustering algorithms are the single link scheme and the complete
link one. We will not enter here in many details (see ref. 8 for further
information), but let us say that in the single link scheme one just demands
a weak connectivity to merge two subsets, and joins them to form a new
cluster as early as possible, while in the complete link scheme the opposite
happens, and subsets are joined to form a new cluster ‘‘as late as possible.’’
Both methods have advantages and drawbacks. The crucial observation
that we will use now is that when a real hierarchical structure is present all
these methods end up to give the same result, and to reconstruct the same
classification.
In these two algorithms we have that, if as before r and s merge to

form the new cluster rŒ for all other clusters y:

dy, rŒ=min{dy, r, dy, s} (single link),

dy, rŒ=max{dy, r, dy, s} (complete link).

The reason for the names is in the graph theory interpretation of the
algorithms. (8) As we have already said it is not difficult to show that if the
true distance matrix is actually ultrametric the optimal permutation with
respect to these two algorithms is be exactly the same.

576 Ciliberti and Marinari



In this framework we have introduced a last test of the structure of
our data: we check how different are the output of the two algorithms to
try to understand if we can detect further hints for an emerging ultrametric
structure. We have analyzed 20 samples at several temperatures values, and
we show in Fig. 8e the average correlation between the two output distance
matrices, that is

w — OdSL · dCLP.

The correlation is very high at low T, and decreases toward the high T
value around T ’ 0.8Tc. Again, on medium large lattice sizes we can detect
hints toward an emerging ultrametric structure but we cannot in any way
get a clear cut answer.

4. CLUSTERING THE SPINS

An interesting question (discussed in details in ref. 1) concerns a pos-
sible clustering of the spins of our system. The issue is clearly very relevant
in the finite dimensional systems studied in ref. 1 where spatial structures
can be very relevant. Here, in mean field, there is no notion of distance, but
still spins can be aggregated in different groups that have different degrees
of correlation.
We will look for the possible presence of some kind of structure (in

this case not hierarchical since there is no reason for this) now in the
space of the elementary spins instead than in configuration space. In the
analysis of configurations we were considering the N×M data matrix
{smi } as representing M configurations, where each data point was an
N-dimensional vector. Now we change our point of view; we regard each
of the N spins as a data point, that is as a vector in aM-dimensional space.
Since we expect highly correlated spins to be in the same cluster,
following (1) we define the distance between spin i and spin j as

dij=1−c
2
ij,

where

cij — OsisjP —
1
M

C
M

m=1
smi s

m
j

is the spin correlation matrix that we can evaluate using our spin configu-
rations generated in a Monte Carlo run.
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It is interesting to follow the evolution in temperature of the ordered
spin matrix for a given sample: we show it in Fig. 9. At intermediate tem-
perature values a large group of spin is clearly very correlated: here O(N)
spins are grouped together. This structure disappears at high T values. It is
remarkable how this picture is similar to Fig. 11d of the second paper of
reference 1. This is a severe warning against misleading interpretations of
the data analysis: here we are in mean field, and there are no spatial local
domains.

Fig. 9. Clustering the spins: for a given sample of the quenched disordered couplings we
look at the spins of our configurations as a set done of N=512 elements (one per lattice site),
each element being a M=512 dimensional vector configurations (all the values taken by the
spin in the given site on our M independent configurations). After clustering these data
vectors we plot the distance matrix dij between spin i and spin j according to the ordering
found in the cluster. The plots correspond to T=0.1Tc, T=0.2Tc,..., 0.9Tc. At very low tem-
peratures a large (O(N)) spin domain structure emerges. The structure disappears when
increasing the temperature.
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5. CONCLUSIONS

The configuration space of a N-spin system is a 2N-dimensional space
and it is very difficult to represent it in order to catch the main physical
features.4 We have shown that cluster analysis allows not only to visualize

4 Only for limited purposes a principal component analysis (PCA) can be adapted to help in
this task. (1)

in a physically meaningful way the structure of the configuration space, but
also allows for quantitative testing of a priori hypothesis about the struc-
ture of the data set.
We have discussed the role of the Z2 symmetry of the system, and how

its removal is necessary to study the relevant physical phenomena. Our
main issue is that quantitative testing is mandatory to make of clustering
techniques an useful tool. We have introduced some of these techniques by
designing tests such to be useful in our context of a (disordered) statistical
mechanics context.
As a crucial benchmark we have analyzed the mean field theory in the

low T replica broken phase, where we know that eventually, in the infinite
volume limit, a hierarchical structure of states emerges. We are able to
observe many hints toward the emerging of such structure, but on the
lattice sizes where we are able to work these indications cannot be con-
sidered as unambiguous. Detecting ultrametricity is very difficult, and
demands very large lattice sizes: this turns out to be true in mean field, and
we expect it to be probably true also in finite dimensional models, where
the existence itself of mean field like states is all to be checked. We believe
that the findings and the techniques that we have reported here will be
important to use in the finite dimensional context. As many other features
(we have in mind for example temperature chaos, (19) that is very difficult to
detect numerically and emerges only at very high orders in perturbation
theory) ultrametricity emerges, already in mean field, only on very large
lattices.
We also believe it is important that in this ‘‘quantitative’’ approach to

clustering we have been able to introduce a natural way to consider not
only sample dependent but also disorder average quantities.
A next step is to apply, by continuing the work of ref. 1, these tech-

niques to finite dimensional disordered systems (defined on very large lat-
tices!) on the one side and to glassy systems on the other side: since here a
crucial goal is to try to understand the details of the spatial, time dependent
organization of the system, techniques like the ones introduced here could
turn out to be very useful.
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